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Abstract  

This report describes technical adaptations of a traumatic brain injury model – largely 

inspired by Marmarou – in order to monitor microdialysis data and PtiO2 (brain tissue 

oxygen) before, during and after injury. We particularly focalize on our model 

requirements which allows us to re-create some drastic pathological characteristics 

experienced by severely head-injured patients: impact on a closed skull, no ventilation 

immediately after impact, presence of diffuse axonal injuries and secondary brain 

insults from systemic origin… We notably give priority to minimize anaesthesia 

duration in order to tend to banish any neuroprotection. 

Our new model will henceforth allow a better understanding of neurochemical and 

biochemical alterations resulting from traumatic brain injury, using microdialysis and 

PtiO2 techniques already monitored in our Intensive Care Unit. Studies on efficiency and 

therapeutic window of neuroprotective pharmacological molecules are now conceivable 

to ameliorate severe head-injury treatment. 

 

Keywords: Traumatic Brain Injury, Microdialysis, PtiO2, Weight-drop, Impact 

Acceleration, Diffuse Axonal Injury, Neuroprotection, Methodology. 
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1. Introduction 

In order to explain the microdialysis and PtiO2 (brain tissue oxygen) data monitored on 

severely head-injured patients from our Intensive Care Unit and to study the specific 

effects of anaesthesia and/or neuroprotection, a traumatic brain injury (TBI) animal 

model, similar to human head injury, is indispensable. 

According to Bullock et al. (1999), "individual animal models rarely, if ever, model the 

entire spectrum of pathological characteristics observed in the patient population with 

severe head injuries". So the majority of drugs that have shown a neuroprotective effect 

on animal have usually few effects on severely head-injured patients. For this reason we 

have chosen to give priority to the concordance between our traumatized animals and 

head-injured patients characteristics. 

The Marmarou impact acceleration model, commonly called “weight-drop”, is a well-

known model of traumatic brain injury. This model, precisely described in two 

complementary articles (Marmarou et al., 1994 ; Foda and Marmarou, 1994), compiles 

some of the most important characteristics of human head-injury. Because of its closed 

skull impact, this model is more particularly in agreement with the cases of falls or road 

accidents, which are the most frequent situations in our Intensive Care Unit. Moreover 

this model was fully attested to produce diffuse axonal injury similar to that described 

in man – these diffuse axonal injuries are detected in more than 90% of fatal head 

injured patients (Gentleman et al., 1995). 

As far as we know, microdialysis and PtiO2 monitoring have never been envisaged 

before and during impact in this type of model. So we report, in this article, some 

technical aspects of the TBI model adaptations to this intracerebral concomitant 

monitoring before, during and after impact. We particularly focalize on the 
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requirements of our model – especially the limitation of neuroprotection - in order to re-

create the most drastic conditions inherent in human head injury. 
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2. Materials and Methods 

Ethics 

The experimental protocol was approved by the local ethics committee and by the 

French Ministry of Defence. 

2.1. Specificities of the impact acceleration TBI model 

Preparation of intracerebral guides and PtiO2 probe 

Before any surgery, 2 intracerebral guides (CMA, Phymep, Paris), the first devoted to 

microdialysis and the second devoted to PtiO2, are bonded together with a specific 

angle, using Araldite glue (Bostik S.A., France). This angle should be determined so 

that sensitive areas of both microdialysis and PtiO2 probes membranes will be very close 

but not directly in contact. 

Because no introducer seems to be available for PtiO2, a modified dummy cannula is 

glued on the PtiO2 probe so that the probe will perfectly fit to the guide. 

Surgery 

Two weeks before the experimentation, a male Sprague-Dawley rat weighting between 

400 and 450g (OFA strain, Iffa Credo, France) is anaesthetised with sodium 

pentobarbital (60mg/kg intraperitoneally) before surgery. 

The intracerebral microdialysis guide - bonded to the PtiO2 guide - is stereotaxically 

implanted in the striatum, 4 mm higher than the precise location of the microdialysis 

probe membrane, according to the atlas of Paxinos and Watson (1982): coordinates 

relative to Lambda in mm A:+9.7; L:+3; H:+6.5. The two guides, and a support for 

fixing to the swivel, are fixed on the very anterior part of the skull with two screws and 

dental cement (Dentalon plus, Heraeus Kulzer, Germany). Immediately back, the 

10mm-diameter impact site on the skull must absolutely stay clear of cement. The skin 
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above this impact site must be closed by stitches in order to be preserved from air 

contact. 

After surgery, the rat is allowed to recover in individual cage, under a 12-hours 

light/dark cycle (light on from 07h00 to 19h00), with free access to food and water for 

the two weeks before the experiment. 

Microdialysis and PtiO2 monitoring 

Twelve hours prior to the experiment, the rat is placed in the experimental plexiglass 

cage in order to adapt to his new environment. 

The day of the injury, the dummy cannula of the straight guide is replaced by the 

microdialysis probe (CMA12, 4mm-length, 0.5mm-diameter, Phymep, France). This 

probe is perfused by an artificial CSF (in mM ; NaCl:147 ; KCl:2.7 ; CaCl2:1.2 ; 

MgCl2:0.85) at the rate of 1µL/min. The modified PtiO2 probe (LICOX CC1.R, 4mm-

sensitive area length, 0.5mm-diameter, Integra NeuroSciences, France) is inserted in the 

slope guide and connected to the LICOX CMP instrument (Integra NeuroSciences, 

France). 

Because rat needs to be in freely-moving, a microdialysis liquid swivel has been 

especially adapted in our lab in order to allow concomitant passing of both electrical 

PtiO2 signal and liquid microdialysis samples. 

A first phase of parameters stabilisation (at least 2 hours) should be observed. Then 

basal levels of PtiO2 and microdialysis parameters can be monitored. 

Induction of Traumatic Brain Injury 

Preliminary experiments lead us to induce Traumatic Brain Injury under transient 3%-

isoflurane anaesthesia (less than 10 min). 
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Stitches above site impact are removed and a 10mm-diameter 3mm-thick metallic disk 

– designed to protect against skull fracture - is placed directly in contact with the clear 

part of the skull. A cylindrical metallic 430g-weight is dropped from two meters 

through a metal tube onto the disk (Fig.1). 
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Fig.1: Schematic representation of the impact 
acceleration device.

metal 2m-tube        430g-weight        foam bed

cement and impact site        velocity sensor

system preventing weight-rebound

(Figure freely adapted from Marmarou, 1994)
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Weight rebound is prevented using an automated system especially designed in our lab. 

A velocity sensor, designed in our lab as well, certifies reproducibility of the weight 

acceleration at the very moment of the impact. 

After impact, the rat is allowed to return to his plexiglass cage, in order to recover from 

anaesthesia and to continue the recordings in conscious freely-moving conditions. 

 

2.2. Evidences of traumatic brain injury 

Behavioural test 

Four days after injury, an adhesive-removal somatosensory test, modified from 

Schallert et al. (2000), was used to reveal evidences of TBI-induced behavioural lesions. 

A standardised adhesive stimulus was attached to one of the rat forelimb. Rats removed 

the stimulus using their teeth. The latency of stimulus contact and removal was recorded 

and compared between 6 injured and 6 sham-lesioned rats (non parametric C1 Fisher-

Yates-Terry test).  

Brain Fixation and Histopathological Preparation 

At least 24h after impact, rats were deeply anaesthetised with an intraperitoneal 

injection of sodium pentobarbital. The chest was rapidly opened, a catheter was 

introduced into the ascending aorta, and the right atrium was incised. Firstly, 200 mL of 

heparin saline (1000U.I. of heparin in saline) were perfused through the catheter, at a 

rate of 25mL/min. Secondly, 400 to 500mL of fixative (4% formaldehyde, 3% acid 

acetic, in saline) were perfused at the same rate. The brain was carefully removed and 

stored in a fixative (4% formaldehyde in saline) for at least 24 hours. The brain was 

finally placed in 10%-formaldehyde for 12 hours before gross examination. Brain 

coronal and sagittal sections were embedded in paraffin. Sections 5 µm-thick were cut 
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with a rotary microtome, stained with haematoxylin-eosin-safran (HES), and examined 

under light microscopy. 
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3. Results and Discussion 

Surgery 

Microdialysis and PtiO2 guides - included in cement - take up a large space on the rat 

head (Fig.2). On account of the little place left, the impact site is quite closed to the 

cement. Despite we wanted to collect microdialysis data and PtiO2 really nearby the 

impact site, such high closeness was firstly difficult to use: at the moment of the impact, 

the cement was sometimes pulled out from the skull because of the force of the impact. 

In order to limit the incidence of such event, manual dexterity - when strongly 

interlocking skull and cement - must be carefully optimized, as one of the crucial point 

of our model. 
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Fig.2: Schematic representation of the intracerebral probes and of the impact site

microdialysis guide and probe          PtiO2 guide and probe         dental screw          dental cement

support for fixing to swivel              skull          10mm-diameter metallic disk : impact site
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During the 2 weeks delay between implantation and experiment, the impact site behind 

the cement must be preserved of air contact in order to not weaken the bone structure 

before impact. So the first rats with an impact site skull exposed to air systematically 

experienced a severe skull fracture at the impact site. The use of stitches to close the 

skin above the impact area suppresses the incidence of skull fracture. 

Reproducibility of the impact 

Piper et al. (1996) affirmed, about the initial Marmarou impact acceleration model, that 

the weight-drop velocity of a 450g-weight dropped from two meters through a 

plexiglass tube can vary by as much as 40%. The velocity control tests performed on 

repeated dropping in our model show only less than 1% variation of velocity (mean 

velocity 6.06 m/s, SEM 0.0079 m/s), which means a perfect reproducibility of our 

model. 

Moreover, Piper reports important sliding frictions in the initial Marmarou impact 

acceleration model, probably because of metal/plexiglass contact. But our results show 

few differences between theoretic velocity and recorded velocity (respectively 6.26m/s 

vs. 6.06m/s, i.e. less than 3.3%), that is to say virtually no sliding frictions. A good 

suitability between the 2m-tube and the weight shapes may explain these limited 

frictions, but the main reason is that our tube is no longer made with plexiglass but with 

metal, and metal/metal contact is said to induce only few sliding frictions. 

In the initial Marmarou impact acceleration model, after the impact, the rat foam bed is 

commonly gently pushed away in a lateral direction to prevent a second impact. This is 

particularly hazardous because a good coordination between weight dropping and foam 

bed moving is indispensable, otherwise the rat could be one more time injured. This 

situation is absolutely inconceivable in our model: various microdialysis and PtiO2 
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connections take up so many space on the rat head that a so fast moving is impossible 

without a risk of connections damage. Our automated system preventing weight-

rebound allows us to prevent from such problems because weight is caught when 

moving up in the metal tube after the impact. No weight-deceleration or problem of 

reproducibility were noticed using this automated system. 

Evidences of traumatic brain injury. 

Modifications from the initial Marmarou model did not seem to induce any alterations 

of the characteristics of the traumatic brain injury pattern. 

For example, in our model, immediately after injury, all rats suffered from respiratory 

distress such as apneas. This is in accordance with Marmarou et al. (1994), who 

observed, on all rats surviving the 450g-2m impact, apneas immediately after injury and 

a reduction in respiratory rate of 20% for up to 30 min postinjury. After a period of 20 

to 30 min, we no longer observed rat death. This is again in accordance with Marmarou 

who noted that, after 30 min postinjury, respiration in his animals gradually recovered 

and was not significantly different from his control rats by 2 hours postinjury. 

In accordance with Foda and Marmarou (1994), our injured-rat recovery from 

anaesthesia was delayed for several minutes (around 5 min for injured rats vs. <1 min 

for sham-lesioned rats). 

Schallert et al. (2000) described a bilateral somatosensory test that is useful in studies of 

loss and/or recovery of function following Central Nervous System injury. We 

simplified this test in an unilateral somatosensory test (removal of an adhesive label 

attached only to one rat forelimb) in order to detect behavioural TBI-induced 

alterations. Injured rats were actually behaviourally altered 4 days after injury: the 
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latency of adhesive-removal was drastically increased for injured rats (1h 6min vs. 8min 

for sham lesioned rats, alpha<0.01, non parametric C1 Fisher-Yates-Terry test). 

Foda and Marmarou (1994) observed in his model that massive diffuse axonal swelling 

and other forms of brain oedema reach a maximum after 24 hours. He also noted that 

diffuse axonal injuries, in the form of retraction balls, continue to be visible, although 

smaller in size and number, until the 10th day after trauma. That is why we decided to 

realize our histopathological preparations at least 24 hours after the impact. We 

observed on our cerebral histological sections some of Foda's histological 

characteristics (1994): pink shrunken neurons, considered as a sign of neuronal death, 

and diffuse axonal injuries in the form of retraction balls (Fig.3). The pink shrunken 

neurons were surrounded by perineuronal vacuolations. In association with these injured 

neurons, we noted pericapillary brain oedema, and several capillaries were congested 

with red blood cells. 

A
Pink shrunken 
neuron

Uninjured 
neuron

HES x 100

Retraction 
ball

B

HES x 400

Perineuronal 
vacuolation

Vascular 
congestion

Pink 
shrunken 
neuron

Fig.3: Photomicrographs of brain sections of an injured rat, 72 hours after injury.

A (HES X100): Retraction balls and many pink shrunken neurons can be observed.

B (HES X400): Capillaries are congested with red blood cells. Pink shrunken neurons are surrounded by 
perineuronal vacuolation.
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Anaesthesia and neuroprotection 

In order to select, in our model, the most appropriate type of anaesthesia during the 

impact, preliminary experiments were performed: 2 protocols of anaesthesia were 

compared. In the first group, 30 rats were submitted to the protocol of Traumatic Brain 

Injury (as described in the chapter "Material and Methods – Induction of Traumatic 

Brain Injury"). In the second group, 10 rats were submitted to the same protocol except 

for the 3%-isoflurane anaesthesia which was replaced by an intraperitoneal injection of 

sodium pentobarbital (60mg/kg) 30 minutes before the impact . Our results show an 

appreciable difference in the mortality of these injured rats according to the way they 

were anaesthetized during the impact: 100% of death under sodium pentobarbital 

anaesthesia (injection) vs. only 33% under transient isoflurane anaesthesia (inhalation). 

Marmarou et al. (1994) did not observe such differences between his 2 types of 

anaesthesia: alpha-chloralose injection or isoflurane inhalation (respectively 44% of 

mortality vs. 58.6%, for a 450g/2m impact). In fact these surprising results should not 

be analysed according to the type of anaesthesia (injection or inhalation), but should be 

related to the anaesthesia duration (long-term/general or transient anaesthesia). Like 

this, two situations may be considered: firstly a high mortality under general long-term 

anaesthesia (100% in our model, and 44 to 58.6% for Marmarou), and a more moderate 

mortality under transient anaesthesia (33% in our model). This beneficial effect of 

transient anaesthesia (less than 10 min in our model) might be related to the quick 

recovery from transient anaesthesia because, as soon as they awake, they no longer 

suffer from apnea, maybe because they control again their breath. All transiently-

anaesthetized rats that did not survive died before they awaked. Moreover, when rats 

were stimulated to awake, the corresponding mortality decreased. These results 
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underline that recovery from anaesthesia must be as short as possible. We also noted for 

control rats that longer is the isoflurane anaesthesia period, longer is the recovery from 

anaesthesia ; this situation is aggravated for injured rats. This also implies that the 

anaesthesia duration must be minimized, in order to reduce the risk of mortality 

incidence. 

The choice of shortest transient isoflurane anaesthesia was also dictated by the fact that 

we wanted to banish any neuroprotection in our model. Actually, isoflurane-related 

neuroprotection is still a matter for debate: although isoflurane anaesthesia was 

commonly said to protect CNS tissue against cerebral injuries such as trauma or 

ischemia, some authors believe that isoflurane anaesthesia only delays but does not 

prevent cerebral infarction in rats subjected to focal ischemia (Warner, 2000 ; 

Kawaguchi et al., 2000). Whether isoflurane can induce neuroprotective effects or not, 

we must anaesthetize our animals according to the respect for Bioethics. For this reason, 

we have chosen, as a precaution, to limit isoflurane anaesthesia duration in order to 

minimize neuroprotective effects. Moreover we have observed on control rats that 3%-

isoflurane anaesthesia (same results for halothane anaesthesia) for more than 15 to 20 

min may result in metabolic alterations up to the 30 hours following anaesthesia 

(unpublished data). Because our model was adapted in order to notably study metabolic 

and neurochemical alterations resulting from traumatic brain injury, such anaesthesia-

induced alterations might be detrimental to our monitoring. All these observations led 

us to use isoflurane only transiently and less than 5 to 10 min (necessary time to induce 

anaesthesia and to induce traumatic brain injury) in order to avoid both rat death and 

metabolic alterations, as well as to limit neuroprotection.  
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Marmarou et al. (1994) observed that non-ventilated rats that did not survive 

experienced apnea lasting for up to 20 seconds immediately after impact, with a gradual 

slowing of respiration until death. He related his high mortality rate in spontaneously 

breathing animals to a transient central respiratory dysfunction that was readily 

reversible by respiratory support: 8.7% of mortality on intubated mechanically 

ventilated rats vs. 58.6% on non-intubated non-ventilated. Moreover he observed that 

the severity of posttraumatic clinical observations and pathological changes was similar 

in ventilated or non-ventilated animals, which mainly means that diffuse axonal injuries 

are beyond the use of mechanical ventilation. Nevertheless diffuse axonal injuries, 

typically TBI-induced, are sometimes said to be aggravated by ischemia and/or hypoxia 

(cited by Povlishock and Chritman, 1995). In accordance with the majority of 

guidelines on severely head-injured patients management (French Society for 

Anaesthesia and Intensive Therapy editors, 1999 ; Brain Trauma Foundation, 1996), 

mechanical ventilation is a neuroprotective treatment notably against secondary cerebral 

hypoxia related to systemic hypoxemia. So, when ventilating, the rats might be both 

protected against secondary-induced hypoxia and against some form of diffuse axonal 

injuries. That is why we have chosen to banish ventilation in our model in order to stay 

in the most drastic conditions, in agreement with human head-injury. 

Fifteen seconds after the impact, Marmarou et al. (1994) noticed an increase of blood 

pressure, followed by a period of hypotension, which is a typical situation observed in 

head-injured patients (French Society for Anaesthesia and Intensive Therapy editors, 

1999 ; Brain Trauma Foundation, 1996). Such periods of hypotension are commonly 

said to induce secondary brain insults from systemic origin - particularly cerebral 

ischemia - because of a cerebral blood flow decrease. Bullock et al. (1999) criticize 
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most TBI animal models essentially because they do not include the secondary insults 

that are typically observed in severe human head injuries, such as hypoxia or 

hypotension. In order to study the true alterations resulting from traumatic brain injury, 

we needed such model with inherent secondary brain insults, which is closer to clinical 

head-injured patients situation immediately after injury. 

 

Conclusion 

Some of the most drastic conditions experienced by severely head-injured patients (i.e. 

impact on a closed skull, absence of ventilation immediately after impact, presence of 

diffuse axonal injuries and of cerebral secondary brain insults from systemic origin…) 

have been successfully reproduced in our model. Because this model allows us to 

monitor both microdialysis and PtiO2 parameters – more and more commonly monitored 

in Intensive Care Unit – ongoing experiments concerning post-traumatic neurochemical 

and biochemical mechanisms are carried out in our Lab. Moreover studies focused on 

influence of neuroprotective pharmacological molecules are now conceivable to 

ameliorate severely head-injured patients treatment. 
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