Forecasting photovoltaic production with neural networks and weather features - Paris School of Business
Article Dans Une Revue Energy Economics Année : 2024

Forecasting photovoltaic production with neural networks and weather features

Résumé

In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data from 16 power plants in Northern Italy (2020-2021), our research underscores the substantial impact of weather variables on solar energy production. Notably, we explore the augmentation of forecasting models by incorporating entity embedding, with a particular emphasis on embedding techniques for both general weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for more precise solar energy forecasts.
Fichier principal
Vignette du fichier
1-s2.0-S0140988324005929-main.pdf (1.86 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
licence

Dates et versions

hal-04779953 , version 1 (18-11-2024)

Licence

Identifiants

Citer

Stéphane Goutte, Klemens Klotzner, Hoang Viet Le, Hans Jörg von Mettenheim. Forecasting photovoltaic production with neural networks and weather features. Energy Economics, 2024, 139, ⟨10.1016/j.eneco.2024.107884⟩. ⟨hal-04779953⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More