Article Dans Une Revue SIAM/ASA Journal on Uncertainty Quantification Année : 2024

Certified Multi-Fidelity Zeroth-Order Optimization

Résumé

We consider the problem of multi-fidelity zeroth-order optimization, where one can evaluate a function $f$ at various approximation levels (of varying costs), and the goal is to optimize $f$ with the cheapest evaluations possible. In this paper, we study certified algorithms, which are additionally required to output a data-driven upper bound on the optimization error. We first formalize the problem in terms of a min-max game between an algorithm and an evaluation environment. We then propose a certified variant of the MFDOO algorithm and derive a bound on its cost complexity for any Lipschitz function $f$. We also prove an $f$-dependent lower bound showing that this algorithm has a near-optimal cost complexity. As a direct example, we close the paper by addressing the special case of noisy (stochastic) evaluations, which corresponds to $\eps$-best arm identification in Lipschitz bandits with continuously many arms.
Fichier principal
Vignette du fichier
main.pdf (471) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04174484 , version 1 (01-08-2023)
hal-04174484 , version 2 (09-10-2024)

Licence

Identifiants

Citer

Étienne de Montbrun, Sébastien Gerchinovitz. Certified Multi-Fidelity Zeroth-Order Optimization. SIAM/ASA Journal on Uncertainty Quantification, 2024, 12 (4), pp.1135-1164. ⟨10.1137/23M1591086⟩. ⟨hal-04174484v2⟩
186 Consultations
95 Téléchargements

Altmetric

Partager

More